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Abstract: We report an active surveillance study of the occurrence of specific antibodies 

to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that 

share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. 

Blood samples were subjected to a modified fluorescent antibody virus neutralization test 

to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the 

nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus 

austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female 

seroprevalence (20.21%, 95% CI: 14.78%–26.57%) was not significantly higher than the 

seroprevalence in males (15.02%, 95% CI: 10.51%–20.54%). The results showed that the 

inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus 

showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences 

were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and 

P. austriacus. The behavioral ecology of these species involved could explain the different 

annual fluctuations in EBLV-1 seroprevalence. 
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1. Introduction 

Wildlife plays a key role in emerging infectious diseases by providing a ―zoonotic pool‖ from 

which pathogens may emerge [1]. Zoonotic pathogens represent approximately 60% of all pathogens 

able to infect humans [2]. In recent years, bats have been implicated in numerous emerging infectious 

disease events and have been recognized as important reservoir hosts for viruses that can cross the 

species barrier to infect humans and other domestic and wild mammals [3]. The role of bats in viral 

diseases is well established, particularly their role as hosts for lyssaviruses, coronaviruses, flaviviruses, 

astroviruses and adenoviruses [3–5]. Bats have several unique features that may maximize their 

effectiveness as reservoir hosts for viruses. Bats are the second largest order of mammals. Currently, 

there are about 1200 recognized bat species worldwide, accounting for approximately 21% of all 

mammalian species. Bats have the potential to rapidly and widely spread viruses (having a high 

mobility, they are the only mammals capable of flight). They have a long lifespan and a high survival 

rate, and many bat species have a gregarious behavior. Bats can fly long distances between their 

summer and overwintering sites, permitting the exchange of viruses between conspecifics or bats of 

other species, i.e., in France, rabies virus infections have been associated with the migratory routes of 

Nathusius‘ pipistrelle (Pipistrellus nathusii) bats [6]. Persistent viral infections occurring among  

long-lived bats, coupled with their often gregarious roosting behavior, could greatly increase the 

potential for intra- and inter-species transmission of viruses [7], especially in summer and winter 

periods. Seasonality in temperate zone bats includes birthing periods, migration, gregarious behavior 

and torpor. Each of these strategies may affect population density, contact rates and immune response, 

thus leading to spatiotemporal variation in infection dynamics [8,9]. 

Numerous bat species have been found to be infected by lyssaviruses [10]. Bats serve as reservoirs 

of 13 of the 15 lyssavirus species described (the only lyssavirus species that have not been isolated 

from bats, to date, are Mokola virus and Ikoma virus). Furthermore, recently described lyssavirus 

species enlarged the genetic diversity of lyssaviruses found in bats [11–13], suggesting that the 

lyssaviruses originated in these mammals and progressively diverged from a common ancestor [14,15]. 

In Europe, four of the lyssavirus species recognized, European bat Lyssavirus Types 1 and 2 (EBLV-1 

and EBLV-2, respectively), Bokeloh bat Lyssavirus (BBLV), the West Caucasian bat Virus (WCBV) 

and one tentative species, Lleida bat Lyssavirus, circulate among several bat species [12,16,17]. 

EBLV-1 is widely distributed throughout Europe, and two variants have distinct distributions and 

evolution histories: one is EBLV-1a, which has an east–west distribution from Russia to France, with 

very little genetic variation; and the other is EBLV-1b, which exhibits a south–north distribution and 

far more genetic diversity [18].  

Different studies showed that lyssavirus dynamics exhibits a strong seasonal pattern [8] and that the 

breeding period could favor the infection of bats [19–21]. Many bat species roost in very large and 

dense maternity colonies. This dense clustering of individuals can provide large opportunities for viral 
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exchange in bat colonies [10]. Previous studies have observed a higher seroprevalence in multispecies 

colonies compared to monospecific colonies, suggesting that interspecific virus transmission plays an 

important role in EBLV-1 dynamics [22]. However, in some cases, infection cycles may be maintained 

among specific host species and transmission may be minimal among sympatric bats [9]. Furthermore, 

differences in the ecological behavior of species (e.g., migration, torpor) can drive different bat 

infection dynamics. In this sense, a higher number of species might not only increase the rates of 

contact between bat groups, but could also facilitate virus entry or spread through the higher mobility 

of individuals among colonies, especially if there are migratory species involved [22].  

Few studies have addressed the inter-annual dynamics of lyssavirus among bat multispecies that are 

roosting in the same refuge, despite these studies giving a better understanding of the dynamics of bat 

lyssaviruses. Our previous investigations have analyzed the temporal dynamics of lyssavirus in one bat 

species (Myotis myotis) roosting in two colonies [23,24]. The present report is based on a long-term 

(nine years) longitudinal study of the prevalence of EBLV-1 neutralizing antibodies and provides the 

first report on the inter-annual dynamics of EBLV-1 in P. austriacus and T. teniotis, both being bat 

species scarcely studied hitherto. We chose this locality, because we found three species  

(P. Pipistrellus, P. austriacus and T. teniotis) that were EBLV-1 RNA-positive by nested Reverse 

Transcriptase-Polymerase Chain Reaction in the first year of study [22]. Our specific goals were: (i) to 

provide information about EBLV-1 seroprevalence in the wild bat community where several European 

bat species share the same refuge; and (ii) to compare the temporal patterns of seroprevalence mainly 

in two less-studied bat species that, moreover, exhibit different ecological strategies. 

2. Experimental Materials and Methods 

2.1. Study Area 

This study was carried out at the San Pedro de los Griegos pothole (41°1' N, 0°38' E; elevation: 

550 m), situated 5 km from Oliete village (Teruel Province). The cavity is an enormous hole with an 

entrance of 65 × 75 m and a 108-m maximum depth. Crevices in the walls are optimal roost sites for 

many birds and bat species. However, the pothole is totally illuminated and shows a large lagoon 

inside (Figure 1).  

Around the cavity, the vegetation is dominated by a mix of low growing Stipa sp., Brachypodium 

retusum, Rosmarinus officinalis and Thymus vulgaris. Local weather is characterized by continental 

climate with a mean annual temperature of 14.60 °C and a mean annual precipitation of 278 mm 

(mainly in spring). However, mean daily temperature is over 20 °C between June and August (with 

15.70 °C and 32.13 °C as the mean minimum and maximum temperatures, respectively). The 

permanent availability of water and nutrients, the dampening of hard external climatic conditions and 

the suitability of the habitat for the reproduction of various vertebrate species make the San Pedro 

pothole a site of unprecedented high biodiversity in Europe [25]. 
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Figure 1. San Pedro de los Griegos pothole. 

2.2. Data Collection 

Bats were captured in summer (from June to July) over a 9-year period (2004–2012). Mist nets 

were employed to capture bats at sunset when emerging from the pothole to forage. All bats were 

identified to species based on published identification keys of the bats of Europe [26]. Individuals were 

sexed, and the reproductive status of adult females was classified as pregnant or lactating, based on 

palpation of the abdomen and nipple condition [27]. 

Blood samples were obtained by a small puncture made in the median artery. The amount of blood 

sampled varied from 0.2 mL to 0.5 mL, according to the size of the animal. Pressure with a sterilized 

absorbent hemostatic sponge impregnated with gelatin was applied to prevent bleeding and facilitate 

healing. The bats were given 10% glucose water to drink to prevent dehydration and to provide rapidly 

assimilated compounds for energy. Once bleeding ceased, the bat was released. Vials containing blood 

were stored at 4 °C for a few hours. Samples were centrifuged for 20 minutes at 9660× g, and the 

serum was extracted with a micropipette. Serum samples and blood pellets were stored at –20 °C 

before analysis. 

All animals were handled in strict accordance with good animal practices, as defined by current 

European legislation. Bat capture and blood sampling were authorized by permit from the Spanish 

Regional Committee for Scientific Capture.  

2.3. Detection of EBLV-1 Neutralizing Antibodies 

The technique used to detect EBLV-1 neutralizing antibodies is an adaptation of the Rapid 

Fluorescent Focus Inhibition Test (RFFIT) [23,28]. A constant dose of a previously titrated (calibrated 

to give 80% fluorescent foci-infected cells), cell culture-adapted EBLV-1 challenge virus (8918 FRA) 

was incubated with 3-fold dilutions of the sera to be labelled. After incubation of the serum-virus 
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mixtures, a suspension of BSR cells (a clone of BHK 21 cells) was added. After 24 hours incubation, 

the cell monolayer was acetone-fixed and labelled with a fluoresceinated anti-nucleocapsid antibody 

(Bio-Rad, Marnes-la-Coquette, France). The optimal challenge dose (the dilution giving 80% infected 

cells for each virus production) was calculated. Titers are presented as an arithmetic mean of two 

independent repetitions. Serum samples with antibody titers <27 are considered negative for EBLV-1-

neutralizing antibodies. This cut-off value is similar to that applied in other studies [23,24,28,29]. 

2.4. Statistical Analyses 

To study the variation in EBLV-1-antibody prevalence, we conducted two analyses: first, three 

explanatory variables (sex, species and year) were first screened using a univariate analysis and a  

chi-square test to check for statistically significant associations with serological status (0: negative;  

1: positive). In the second analysis, we used a generalized additive model (GAM) to study the temporal 

patterns of EBLV-1-antibody prevalence in only two species (P. austriacus and T. teniotis). More 

specifically, we used a generalized additive model with the binomial error distribution, where the 

seroprevalence was the response variable and sex, species and year (2004–2012) were the explanatory 

variables. The ―year‖ variable was modeled as a covariate fitted with penalized cubic regression 

splines and sex and species as a fixed categorical factor. To avoid over-fitting and to retain more easily 

interpretable relationships in the GAM smoothing function, an upper limit of 4 degrees of freedom was 

set for the year variable when fitting the models. We used an information-theoretic procedure and the 

Akaike information criterion corrected for small sample sizes (AICc) to compare models [30]. 

Modeling was performed using the ―lme4‖ and ‗‗mgcv‘‘ packages in the R program v. 2.14 [31].  

3. Results  

We report the results of the prevalence of specific EBLV-1 neutralizing antibody analysis from  

the 2004–2012 period in nine bat species roosting in the same refuge. Five of these species 

(Eptesicus serotinus, P. kuhlii, P. pygmaeus, Myotis myotis and M. daubentonii) were captured 

sporadically (sample size <10 individuals during the whole study period), while the rest of the species 

sampled (P. pipistrellus, Hypsugo savii, Plecotus austriacus and Tadarida teniotis) were captured 

often. The larger samples (>100 individuals) were obtained in P. austriacus and T. teniotis, because 

they form large colonies in this cavity. T. teniotis form a colony of several hundred individuals. The 

colony of P. austriacus is smaller and consists of 150 individuals, approximately [32]. 

We observed pregnant females in all bat species, except in E. serotinus, P. pygmaeus and  

M. myotis, where females were never captured, indicating that this cavity is a breeding roost for the 

rest of the species found. Males were also captured during the breeding period, indicating that males, 

either as solitary individuals or forming part of the maternity colonies (e.g., P. austriacus), are present 

during the breeding period in the cave. 

3.1. Presence of EBLV-1 Antibodies 

Among the 406 sera obtained, 71 (17.49%) were positive for EBLV-1-neutralizing antibodies. 

EBLV-1 antibodies were detected in 6 (66.67%) of the nine species analyzed (P. pipistrellus, P. kuhlii, 
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H. savii, P. austriacus, E. serotinus and T. teniotis) (Table 1). No significant differences in EBLV-1 

seroprevalence were detected among seropositive bat species (χ
2
 = 1.67, df = 5, p = 0.89). The highest 

seroprevalence was observed in H. savii. We did not find any difference in EBLV-1 seroprevalence 

between females (20.21%, 95% CI: 14.78%–26.57%) and males (15.02%, 95% CI: 10.51%–20.54%) 

(χ
2 

= 1.88, df = 1, p = 0.17) when all species were analyzed together and when only bat species with a 

large sample size—P. austriacus and T. teniotis—were considered (Table 1).  

Table 1. The serological results of European Bat Lyssavirus Type 1 (EBLV-1) neutralizing 

antibodies analyzed by all bat species captured in the San Pedro de los Griegos pothole 

(2004–2012). 

Species 
Females Males Total 

n n+ % (95 CI) n n+ % (95 CI) n n+ % (95 CI) 

E. serotinus nd nd nd 9 1 11.11 (0.3–48.2) 9 1 11.11 (0.3–48.2) 

H. savii 7 0 0 15 5 33.33 (11.8–61.6) 22 5 22.73 (7.8–45.4) 

M. daubentonii 1 0 0 1 0 0 2 0 0 

M. myotis nd nd nd 1 0 0 1 0 0 

P. austriacus 76 13 17.10 (9.4–27.5) 56 8 14.28 (6.4–26.2) 132 21 15.91 (10.1–23.3) 

P. kuhlii 6 1 16.67 (0.4–64.1) 2 0 0 8 1 12.50 (0.3–52.6) 

P. pipistrellus 9 2 20.22 (2.8–60.0) 19 2 10.53 (1.3 –33.1) 28 4 14.28 (4.0–32.7) 

P. pygmaeus nd nd nd 2 0 0 2 0 0 

T. teniotis 94 23 24.47 (16.2–34.4) 108 16 14.81 (8.7–22.9) 202 39 19.31 (14.1–25.4) 

Total 193 39 20.21 (14.8–26.6) 213 32 15.02 (10.5–20.5) 406 71 17.49 (13.9–21.5) 

n: number of individuals analyzed; n+: number of seropositive bats; CI: 95% confidence intervals; nd: no data. 

 

Capture-mark-recapture of some bats during the study period allowed the tracking of temporal 

changes in EBLV-1 seroneutralization titers. Seven P. austriacus were captured and analyzed almost 

two times at intervals of one or several years. Four of these seven bats showed positive antibody titers, 

becoming negative in the following recapture sessions after some years, indicating that these bats 

survive at least several years after their seroconversion (Table 2). 

Table 2. Individual serological follow-up in captured-mark-recaptured P. austriacus.  

Sex Id 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Females 

1 0 ns ns ns ns 0 0 ns 52 

2 ns 0 ns ns 56 ns 43 ns ns 

3 ns 0 ns 56 ns ns ns ns ns 

4 ns ns ns ns 35 ns ns 0 ns 

5 ns ns ns 58 0 ns ns ns ns 

6 ns ns ns 147 0 ns ns ns ns 

Males 

7 ns ns 35 48 ns ns ns 0 ns 

8 ns ns ns nd 53 ns ns ns ns 

9 ns ns nd 49 ns ns ns ns ns 

Id: identification number of individuals; ns: not sampled; nd: no serological data. 
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3.2. Temporal Variation of EBLV-1 Antibodies 

The results obtained from 2004–2012 indicate significant inter-annual variations in the percentage 

of seropositive bats within the study colony (χ
2
 = 94.01, df = 8, p < 0.001), with highest seroprevalence 

in 2007 (70.59%). Only in two years (2005 and 2009) were seropositive bats not detected (Figure 2, 

Tables 3–5).  

 

 

Figure 2. Evolution of percentage of EBLV-1 seropositive bats by species from 2004 to 

2012. Black circles for P. austriacus, grey circles for T. teniotis and black triangles for 

other species (E. serotinus, E.s; H. savii, H.s, P. kuhlii, P.k; and P. pipistrellus, P.p). 

Table 3. The number of bat samples analyzed during the nine-year period.  

Years 
Females Males Total 

n n+ % (95 CI) n n+ % (95 CI) n n+ % (95 CI) 

2004 55 6 10.91 (4.1–22.2) 55 1 1.82 (0.0–9.7) 110 7 6.36 (2.6–12.7) 

2005 7 0 0 15 0 0 22 0 0 

2006 30 9 30.00 (14.7–49.4) 20 3 15.00 (3.2–37.9) 50 12 24.00 (13.1–38.2) 

2007 18 14 77.78 (52.4–93.6) 16 10 62.50 (35.4–84.8) 34 24 70.59 (52.5–84.9) 

2008 13 3 23.08 (5.0–53.8) 30 6 20.00 (7.7–38.6) 43 9 20.93 (10.0–36.0) 

2009 17 0 0 24 0 0 41 0 0 

2010 16 1 6.25 (0.1–30.2) 14 2 14.29 (1.8–42.8) 30 3 10.00 (2.1–26.5) 

2011 26 4 15.38 (4.4–34.9) 23 8 34.78 (16.4–57.3) 49 12 24.49 (13.3–38.9) 

2012 11 2 18.18 (2.3–51.8) 16 2 12.50 (1.5–38.3) 27 4 14.81 (4.2–33.7) 

n: number of individuals analyzed; n+: number of seropositive bats; CI: 95% confidence intervals; nd: no data. 
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Table 4. The number of bat samples analyzed, by bat species and year.  

Years 
E. serotinus P. kuhlii H. savii 

n n+ % (95 CI) n n+ % (95 CI) n n+ % (95 CI) 

2004 5 0 0 4 1 25.00 (0.6–80.6) 3 0 0 

2005 nd nd nd 1 0 0 1 0 0 

2006 1 0 0 nd nd nd 1 0 0 

2007 nd nd nd nd nd nd 2 2 100.00 (22.4–100.0) 

2008 nd nd nd nd nd nd 2 2 100.00 (22.4–100.0) 

2009 nd nd nd nd nd nd 9 0 0 

2010 1 0 0 nd nd nd nd nd nd 

2011 nd nd nd 3 0 0 4 1 25.00 (0.6–80.6) 

2012 2 1 50.00 (1.3–98.7) nd nd nd nd nd nd 

Table 5. The number of bat samples analyzed, by bat species and year. 

Years 
P. pipistrellus P. austriacus T. teniotis 

n n+ % (95 CI) n n+ % (95 CI) n n+ % (95 CI) 

2004 7 0 0 34 0 0 57 6 10.53 (4.0–21.5) 

2005 2 0 0 13 0 0 5 0 0 

2006 2 0 0 11 2 18.18 (2.3–51.8) 35 10 28.57 (14.6–46.3) 

2007 1 0 0 14 11 78.57 (49.2–95.3) 17 11 64.71 (38.3–85.8) 

2008 3 3 100.00 (36.8–100.0) 16 4 25.00 (7.3–52.4) 22 0 0 

2009 7 0 0 5 0 0 16 0 0 

2010 nd nd nd 12 1 8.33 (0.2–38.5) 17 2 11.76 (1.5–36.4) 

2011 4 1 25.00 (0.6–80.6) 16 1 6.25 (0.2–30.2) 21 9 42.86 (21.8–66.0) 

2012 2 0 0 11 2 18.18 (2.3–51.8) 12 1 8.33 (0.2–38.5) 

n: number of individuals analyzed; n+: number of seropositive bats; nd: no data; CI: 95% confidence intervals; nd: no data. 

 

Models that incorporate sex and species variables were not significantly different from the model 

without these variables (ΔAICc < 2) (Table 6). The best model showed a significant different nonlinear 

pattern in the EBLV-1 seroprevalence along P. austriacus and T. teniotis. The effect of year fitted with 

the spline was highly significant for two species (P. austriacus: df = 2.92, p < 0.001 and T. teniotis:  

df = 3.87, p = 0.026), suggesting a different inter-annual pattern among these species (Figure 3,  

Table 6). 

Table 6. Model building results for the generalized additive models (GAM) relating  

EBLV-1-antibody prevalence and explanatory variables. 

GAM model expression AICc ΔAICc 

1- seroprevalence ~ s(year,by = P. austriacus) + s(year,by = T. teniotis) 273.22 0.00 

2- seroprevalence ~ sex + s(year) 286.49 13.27 

3- seroprevalence ~ s(year) 286.90 13.68 

4- seroprevalence ~ sex + species + s(year) 287.75 14.53 

5- seroprevalence ~ species + s(year) 288.39 15.17 

6- seroprevalence ~ sex × species + s(year) 289.53 16.31 
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Figure 3. Spline fit (solid line) with 95% confidence interval (dashed lines) of the 

variability in the EBLV-1 seroprevalence as a function of years (GAM: EBLV-1-antibody 

prevalence ~ intercept + s(year, by = P. austriacus) + s(year, by = T. teniotis)).  

(Left) T. teniotis; (right) P. austriacus. 

4. Discussion 

Although no positive sera were detected in three bat species (M. myotis, M. daubentonii and  

P. pygmaeus), this result is probably due to the very low sample size. The high percentage (67%) of 

seropositive species found and the lack of significant differences in EBLV-1 seroprevalence among 

seropositive species suggest that most of the bat species can be exposed to EBLV-1 in this pothole 

although most of these species are not considered as lyssavirus reservoirs by previous studies 

[12,13,16,33].  

Previous studies have shown higher prevalence in females than in males [33,34]. This difference 

may be due to the gregarious behavior of female bats in summer (nursing colonies are composed 

almost exclusively of adult females). In these colonies, virus transmission may be favored by high 

contact rates during social grooming, nursing or olfactory or lingual contact with body fluids. 

Reproductive activity may also play a role in virus transmission [19], because an increased 

susceptibility to infectious disease during pregnancy and lactation has been demonstrated in bats [34] 

and other mammals [35]. However, we report in this study no sex differences of EBLV-1 

seroprevalence. The presence of males in this cavity during summer could indicate that males also are 

present in maternity colonies, as observed in P. austriacus colonies, or roost near these colonies. 

Significant fluctuations in the percentage of seropositive bats are indicative of several different 

episodes of EBLV-1 infection occurring in P. austriacus and T. teniotis colonies during the period of 

study. A quick increase and a high seropositive percentage after a lyssavirus episode are not unusual in 

a gregarious behavior species and could explain the sudden increase in the percentage of seropositive 

bats in T. teniotis and P. austriacus colonies. A similar quick increase with seropositive peaks of  

60%–70% was observed in different colonies of M. myotis in Mallorca [23,24]. However, in M. myotis 
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colonies, the evolution of seroprevalence after infection peaks follows a more gradual decline over 

subsequent years, until a new episode takes place, very different from what is observed here. The delay 

between the waves is then dependent on the rate of inflow of susceptible bats into the colonies as a 

consequence of new births, bat immigration from neighboring colonies and the expiration of EBLV-1-

specific immunity in previously infected animals [23]. When a sufficient fraction of susceptible bats in 

the colony is reached, the virus spreads again if infected individuals join the colony. In the T. teniotis 

and P. austriacus colonies, the increase of seroprevalence is followed by a rapid decline until 

seropositive bats are not detected. The difference in the seropositive percentage evolution can be due 

to a higher rate of inflow of individuals in colonies of T. teniotis and P. austriacus. No data of inflow 

are available on T. teniotis, but very few recaptures were obtained during the study, indicating 

probably a high inflow rate in this colony. However, recapture rates in the P. austriacus colony were 

higher, suggesting a lower inflow in this species. Another hypothesis could be a different lifespan of 

immunity in these species. Recent studies estimated the lifespan of the M. myotis immunity from 

EBLV-1 to be around two years [36]. In this respect, it is possible that the immunity lifespan would be 

shorter in P. austriacus and T. teniotis than in M. myotis.  

The best model obtained by GAM analysis indicated that inter-annual patterns of seroprevalence 

evolution were significantly different for T. teniotis and P. austriacus. Annual fluctuations could result 

from the behavioral ecology of the species involved [9]. T. teniotis and P. austriacus are two species 

with a different social organization and behavior. While T. teniotis forms large maternity colonies and 

can make long seasonal movements, P. austriacus forms smaller maternity colonies constituted by 

both sexes and makes shorter seasonal movements [37]. Different host ecology, behavior and 

movement could explain the different temporal variations in seroprevalence in these two species. 

Changes in density during migration or colony formation may affect contact rates and, thus, disease 

dynamics [9,38]. 

Differences in EBLV-1 exposure dynamics could also be related to host community composition 

and inter-species interaction. Higher EBLV-1 seroprevalence was observed in large and multispecies 

colonies compared to smaller and monospecific colonies, suggesting that interspecific virus 

transmission plays an important role in dynamics. A higher number of species might not only increase 

the rates of contact between bat groups, but could also facilitate virus entry or spread through the 

higher mobility of individuals among colonies, especially if there are migratory species [22]. In this 

sense, M. schreibersii (a species that often shares roost with M. myotis) has been considered as a 

regional reservoir and an essential species for EBLV-1 persistence in the Balearic Islands [36].  

Other bat species present in the San Pedro pothole, such as P. pipistrellus and P. kuhlii, showed 

lower EBLV-1 seroprevalence than P. austriacus and T. teniotis. However, previous studies of bat 

rabies surveillance in Europe did not find EBLV-1-neutralizing antibodies in both species of 

Pipistrellus (for review see [39,40]). These results could be indicative of a low public health risk 

associated with these synanthropic species. Furthermore, the lack of a standardized serological test 

procedure, including arbitrary cut-off values, makes the comparison between previous European 

studies difficult. However, the higher values of EBLV-1 seroprevalence in our study could be due to 

differences in virus circulation and dynamics resulting from regional differences or selection of 

different types of colony (large multispecies maternity colonies in this case) [39,40]. Research 
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programs that focus mainly on multi-host systems will help advance our understanding of the ecology 

of bat diseases.  

5. Conclusions 

This research addresses the role of multiple hosts in the infection dynamics of Lyssavirus. To 

advance our understanding of the ecology of bat lyssavirus, we report the results of specific EBLV-1 

neutralizing antibody analysis in nine bat species roosting in the San Pedro de los Griegos pothole. 

These results suggest that most bats species roosted in this cave were exposed to the EBLV-1 

lyssavirus. The evolution of seroprevalence in T. teniotis and P. austriacus colonies after infection 

peaks is different from that observed in M. myotis colonies. Differences in behavior ecology and 

population dynamics among bat species could explain the differences in the inter-annual variability of 

EBLV-1 seroprevalence. 
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